3.900 \(\int \frac{\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{2/3}} \, dx\)

Optimal. Leaf size=119 \[ -\frac{3 A \sin (c+d x) (b \cos (c+d x))^{4/3} \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};\cos ^2(c+d x)\right )}{4 b^2 d \sqrt{\sin ^2(c+d x)}}-\frac{3 B \sin (c+d x) (b \cos (c+d x))^{7/3} \, _2F_1\left (\frac{1}{2},\frac{7}{6};\frac{13}{6};\cos ^2(c+d x)\right )}{7 b^3 d \sqrt{\sin ^2(c+d x)}} \]

[Out]

(-3*A*(b*Cos[c + d*x])^(4/3)*Hypergeometric2F1[1/2, 2/3, 5/3, Cos[c + d*x]^2]*Sin[c + d*x])/(4*b^2*d*Sqrt[Sin[
c + d*x]^2]) - (3*B*(b*Cos[c + d*x])^(7/3)*Hypergeometric2F1[1/2, 7/6, 13/6, Cos[c + d*x]^2]*Sin[c + d*x])/(7*
b^3*d*Sqrt[Sin[c + d*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0700779, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.103, Rules used = {16, 2748, 2643} \[ -\frac{3 A \sin (c+d x) (b \cos (c+d x))^{4/3} \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};\cos ^2(c+d x)\right )}{4 b^2 d \sqrt{\sin ^2(c+d x)}}-\frac{3 B \sin (c+d x) (b \cos (c+d x))^{7/3} \, _2F_1\left (\frac{1}{2},\frac{7}{6};\frac{13}{6};\cos ^2(c+d x)\right )}{7 b^3 d \sqrt{\sin ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(b*Cos[c + d*x])^(2/3),x]

[Out]

(-3*A*(b*Cos[c + d*x])^(4/3)*Hypergeometric2F1[1/2, 2/3, 5/3, Cos[c + d*x]^2]*Sin[c + d*x])/(4*b^2*d*Sqrt[Sin[
c + d*x]^2]) - (3*B*(b*Cos[c + d*x])^(7/3)*Hypergeometric2F1[1/2, 7/6, 13/6, Cos[c + d*x]^2]*Sin[c + d*x])/(7*
b^3*d*Sqrt[Sin[c + d*x]^2])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) (A+B \cos (c+d x))}{(b \cos (c+d x))^{2/3}} \, dx &=\frac{\int \sqrt [3]{b \cos (c+d x)} (A+B \cos (c+d x)) \, dx}{b}\\ &=\frac{A \int \sqrt [3]{b \cos (c+d x)} \, dx}{b}+\frac{B \int (b \cos (c+d x))^{4/3} \, dx}{b^2}\\ &=-\frac{3 A (b \cos (c+d x))^{4/3} \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};\cos ^2(c+d x)\right ) \sin (c+d x)}{4 b^2 d \sqrt{\sin ^2(c+d x)}}-\frac{3 B (b \cos (c+d x))^{7/3} \, _2F_1\left (\frac{1}{2},\frac{7}{6};\frac{13}{6};\cos ^2(c+d x)\right ) \sin (c+d x)}{7 b^3 d \sqrt{\sin ^2(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0202145, size = 89, normalized size = 0.75 \[ -\frac{3 \sqrt{\sin ^2(c+d x)} \cot (c+d x) \sqrt [3]{b \cos (c+d x)} \left (7 A \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};\cos ^2(c+d x)\right )+4 B \cos (c+d x) \, _2F_1\left (\frac{1}{2},\frac{7}{6};\frac{13}{6};\cos ^2(c+d x)\right )\right )}{28 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(b*Cos[c + d*x])^(2/3),x]

[Out]

(-3*(b*Cos[c + d*x])^(1/3)*Cot[c + d*x]*(7*A*Hypergeometric2F1[1/2, 2/3, 5/3, Cos[c + d*x]^2] + 4*B*Cos[c + d*
x]*Hypergeometric2F1[1/2, 7/6, 13/6, Cos[c + d*x]^2])*Sqrt[Sin[c + d*x]^2])/(28*b*d)

________________________________________________________________________________________

Maple [F]  time = 0.29, size = 0, normalized size = 0. \begin{align*} \int{\cos \left ( dx+c \right ) \left ( A+B\cos \left ( dx+c \right ) \right ) \left ( b\cos \left ( dx+c \right ) \right ) ^{-{\frac{2}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(2/3),x)

[Out]

int(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(2/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(2/3),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c))^(2/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac{1}{3}}}{b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(2/3),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(1/3)/b, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))**(2/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(b*cos(d*x+c))^(2/3),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x + c))^(2/3), x)